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ABSTRACT

Network mobility basic support protocol (NEMO BSP) is an important 
requirement for internet networks to reach the goal of ubiquitous connectivity. NEMO 
basic support protocol handles the mobility of multiple nodes in an aggregate way as a 
mobile network. The standard NEMO suffers from a number of problems and 
limitations, such as inefficient route due to pinball problem, link drop problem, and 
long handoff latency; however, most previous studies attempting to solve such 
problems impose an extra signaling load and/or modify the functionalities of the main 
entities. To overcome such problems: Firstly, a new architecture for infrastructure-
based route optimization in NEMO (FRON) that uses a correspondent firewall with 
new filtering rules to support the route optimization in NEMO BSP been proposed. In 
order to further improve the correspondent registration, a more secure and lightweight 
enhanced return routability procedure (ERRP) extended from the original 
correspondent registration option headers within FRON infrastructure also been 
developed. Furthermore, instead of employing ERRP in stateless environments, a new 
route optimization scheme for NEMO stateless DHCPv6 using the proposed ERRP 
with the DHCPv6PD (DHCPv6 prefix delegation) protocol been implemented.
Finally, to overcome the bursts of re-registration signaling due to dropping links in the 
binding cache of the correspondent entities; correspondent node, correspondent router, 
and correspondent firewall; a new cache replacement policy is proposed to solve such 
problem. The results shows that the proposed mechanisms provides secure 
communications by making an authorized decision about the mobile router (MR) 
home of address (HoA), care of address (CoA), and the complete mobile network 
prefixes (MNPs) underneath the MR. In addition, it reduces the total signaling 
required for NEMO handoffs, especially when the number of mobile network nodes 
(MNNs) and/or CNs is increased. Moreover, the proposed mechanisms can be easily 
deployed without modifying the mobility protocol stack of CNs. 
A thorough analytical model and network simulator (NS-2) are used for evaluating the 
performance of the proposed mechanisms compared with NEMO BSP and state-of-
the-art of route optimization schemes. Numerical and simulation results demonstrate 
that our proposed design and mechanisms outperforms other route optimization 
schemes in terms of security considerations, handoff latency, and total signaling load 
on wired and wireless links.
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ABSTRAK

Protokol sokongan asas mobiliti rangkaian (NEMO BSP) adalah satu syarat penting 
rangkaian internet agar rangkaian berada di mana-mana (ubiquitous connectivity). 
NEMO BSP mengendalikan mobiliti nod berbilang secara agregat sebagai rangkaian 
mobil. NEMO piawai mengalami beberapa masalah dan kekangan, seperti laluan tidak 
cekap akibat masalah pinball, masalah kemerosotan sambungan, dan kependaman 
pengalihan yang panjang. Namun, kebanyakan kajian lepas yang cuba menyelesaikan 
masalah tersebut meningkatkan beban pengisyaratan dan/atau mengubah kefungsian 
entiti-entiti utama. Untuk mengatasi masalah-masalah ini, pertamanya dicadangkan 
senibina baru untuk pengoptimuman laluan berasaskan prasarana dalam NEMO 
(FRON). Ia menggunakan dinding api perantara dengan petua penapisan baru untuk 
menyokong pengoptimuman laluan dalam NEMO BSP. Untuk membaiki pendaftaran 
perantara, satu prosedur kebolehroutan kembali lanjutan (ERRP) yang lebih selamat 
dan ringan. Turut dicadangkan ia lanjutan kepada kepala pilihan pendaftaran perantara 
(correspondent registration option headers) yang asal dalam prasarana FRON. 
Seterusnya, skim baru pengoptimuman laluan bagi NEMO DHCPv6 yang stateless
menggunakan ERRP yang dicadangkan dengan protokol perwakilan awalan DHCPv6 
(DHCPv6 prefix delegation, DHCPv6PD). Telah dilaksanakan akhir sekali, untuk 
mengatasi letusan pengisyaratan pendaftaran semula (bursts of re-registration 
signalling) yang berlaku akibat kemerosotan sambungan di jadual cache mengikat 
(binding cache) entiti perantara (iaitu nod perantara, penghala perantara, dan dinding 
api perantara); satu polisi penggantian jadual cache dicadangkan untuk mengatasi 
masalah ini. Keputusan menunjukkan bahawa mekanisme-mekanisme yang 
dicadangkan menyediakan komunikasi yang selamat dengan membuat keputusan yang 
dibenarkan (authorized) mengenai alamat rumah (home of address, HoA) dan alamat 
penjaga (care of address, CoA) penghala mobil (mobile router, MR), serta awalan 
rangkaian mobil (mobile network prefixes, MNP) yang lengkap di bawah MR. 
Tambahan pula, ia mengurangkan jumlah pengisyaratan yang diperlukan untuk 
pengalihan NEMO, terutamanya apabila bilangan nod rangkaian mobil (mobile 
network nodes, MNN) dan/atau nod perantara (corresponding nodes, CN) meningkat. 
Selain itu, mekanisme-mekanisme cadangan ini boleh dilaksana dengan mudah tanpa 
mengubah tindanan protokol mobiliti CN. Satu model analitikal menyeluruh dan 
simulator rangkaian (NS-2) digunakan untuk menilai prestasi mekanisme-mekanisme 
cadangan berbanding NEMO BSP dan skim pengoptimuman penghala yang terkini. 
Keputusan berangka dan simulasi menunjukkan bahawa rekabentuk dan mekanisme 
yang cadangan mengatasi skema pengoptimuman laluan lain dari segi pertimbangan 
keselamatan, kependaman pengalihan, dan jumlah beban pengisyaratan pada 
sambungan berwayar dan tanpa wayar.
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CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

Our mobile lifestyle is currently reflected in the importance of mobile 

communications. However, in some situations, devices (or hosts, as we will refer to 

them) move as a group, for example, when travelers commute in the same train or 

coach for the same distance. Such cases are not efficiently covered by considering the 

mobility of individual devices because this involves increased signaling overhead and 

power consumption. A more efficient solution is required for the aggregate mobility 

(or network mobility) of devices using at least one mobile router. The Internet 

Engineers Task Force (IETF) developed a protocol named Mobile IPv4 (MIP) 

(Perkins 2002), and for IPv6 communication environments, MIPv6 (Johnson et al. 

2004) was developed to support fast and smooth connectivity to the mobile node. 

Currently, Internet users may own more than one mobile device, and these devices 

feature multiple interfaces that can be connected to each other as well as to other 

networks. This includes the set of Internet-connected devices found in vehicles. IETF 

extends MIPv6 to the design of NEMO BSP (Devarapalli et al. 2005) to handle node 

mobility in an aggregate way using a dedicated router. In NEMO BSP, there are four 

main entities, which are defined as follows: Correspondent Node (CN), Mobile Router 

(MR), Home Agent (HA), and Mobile Network Node (MNN) as shown in Figure 1.1.

CN is any IPv6 node that communicates with the MNN. MR is a router that handles 

all movement transparently for all MNN underneath. HA is a router usually located in 

the home network of MNN that acts on behalf of the mobile node while away from the 

home link. The MNN is described as a mobile node that has the ability to move 

through different networks with seamless connectivity. When MNN leaves its home 

link and enters a new subnet, it notifies its home agent on its home link. After 
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updating the HA with the new address acquired from the foreign link, which is based 

on the foreign prefix and called the Care-of Address (CoA), the MNN can then be 

reached through its HA. In this case, network overheads and handoff latency will be 

increased due to an insufficient route (i.e., Pinball Routing problem). The IETF 

developed an optimization procedure to address this problem. A direct connection is 

established between the MNN and the CN. To alleviate the performance penalty, 

Mobile IPv6 includes a mode of operation that allows the mobile node and its peer, a

CN, to exchange packets directly, bypassing the home agent completely after the 

initial setup phase (i.e., return routability procedure). This mode of operation is called 

route optimization (RO). When RO is used, the mobile node sends its current care-of 

address to the CN, using binding update (BU) messages. The CN stores the binding 

between the home address and care-of address into its Binding Cache (Nikkander et 

al. 2005).

Figure 1.1 NEMO basic entities

RO typically requires the MNN and CN to have certain capabilities, such as 

the possibility to execute a Return Routability procedure (RRP) - MNN transmitting 
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Home Test Init (HoTI), Care-of Test Init (CoTI) and direct Binding Update messages 

to CN, with the CN responding with respective Home Test (HoT), Care-of Test Init 

(CoT), and Binding Acknowledgement messages to the MN. If the CN is a basic IP 

node without support for RO, the MNN with support for RO cannot set up RO with 

this CN because RFC 3775 (Johnson et al. 2004) specifies "If a mobile node attempts 

to set up route optimization with a node with only basic IPv6 support, an ICMP error 

will signal that the node does not support such optimizations and communications will 

flow through the home agent".

The nodes involved in performing RO would be expected to exchange 

additional signaling messages to establish RO. The required amount of signaling 

depends on the solution but is likely to exceed the amount required in the home 

Binding Update procedure defined in NEMO Basic Support. The amount for signaling 

is likely to increase with the increasing number of Mobile Network Nodes and/or CNs

and may be amplified with the nesting of mobile networks. It may scale to 

unacceptable heights, especially to the resource-scarce mobile node, which typically 

has limited power, memory, and processing capacity (Koodli et al. 2007). This may 

lead to an issue that impacts NEMO RO known as the phenomenon of "Binding 

Update Storm", or more generally, "Signaling Storm". This occurs when a change in 

the point of attachment of the mobile network is accompanied with a sudden burst in 

signaling messages, resulting in temporary congestion, packet delays, or even packet 

loss. This effect will be especially significant for wireless environments where 

bandwidth is relatively limited. It is possible to moderate the effect of Signaling Storm 

by incorporating mechanisms such as spreading the transmissions burst of signaling 

messages over a longer period of time or aggregating the signaling messages. Even 

then, the amount of signaling required might be overwhelming because large mobile

networks (such as those deployed on a train or plane) may potentially have a large 

number of flows with a large number of CNs. This might suggest the need to have 

some adaptive behavior that depends on the amount of signaling required versus the 

effort needed to tunnel home (Watari et al. 2007).
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1.2       PROBLEM STATEMENT

Network mobility (NEMO) handles mobility of multiple nodes in an aggregate 

manner as a mobile network. The standard NEMO suffers from a number of 

limitations, such as inefficient route and increased handoff latency. Most previous 

studies attempting to solve such problems impose an extra signaling load and/or 

modify the functionalities of the main entities. Due to the diversity of the locations of 

different nodes that a Mobile Network Node may signal with and the complexity of 

NEMO Route-Optimization procedures, which may cause several rounds of signaling 

messages, a NEMO Route-Optimization procedure may take a longer time to finish its 

handoff than that in NEMO Basic Support. This may exacerbate the overall delay 

during handoffs and cause a further degradation in the performance of the applications 

running on Mobile Network Nodes (Shahriar 2012; Qureshi 2010). Such problems 

from Correspondent Node side are: 

i. Correspondent entities suffer from a problem of establishing route optimization

between the CNs and mobile network nodes associated with NEMO.

To support NEMO RO, some nodes need to be changed or upgraded. A smaller 

number of nodes required to be changed will allow for easier adoption of the 

NEMO Route-Optimization solution in the Internet and create less of an impact on 

the existing Internet infrastructure. The number and the types of nodes involved in 

new functionalities also affect how much of the route is optimized. In addition, it 

may also be beneficial to reuse existing protocols (such as Mobile IPv6) as much 

as possible (Watari et al. 2007; Shahriar, Atiquzzaman, et al. 2010). It may prove 

to be difficult to introduce new functionalities at CNs because, by definition, any 

IPv6 node can be a CN. This might mean that only those CNs that are modified 

can enjoy the benefits of RO. If the CN is a basic IP node without support for RO,

the MN with support for RO cannot set up RO for this CN because RFC 3775 

(Johnson et al. 2004). This will lead to performance degradation. The question 

here is how the initiator of RO knows whether the correspondent entity supports 

the functionality required to establish a RO session. Typically, the initiator 

attempts RO with the correspondent entity. Depending on the protocol specifics, 

the initiator may receive (a) a reply from the correspondent entity indicating its 
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capability, (b) an error message from the correspondent entity, or (c) no response 

from the correspondent entity within a certain time period. This serves as an 

indication of whether the correspondent entity supports the required functionality 

to establish RO. This form of detection may incur an additional delay as a penalty 

when the correspondent entity does not have a RO capability. 

ii. High signaling cost of RO in NEMO Lacks of protects against changes or inserts 

options in mobile network prefixes option by attackers.

The authentication portion for the initialization of the optimization procedure for 

verifying the Home-of address (HoA) and Care-of address (CoA) to the mobile 

node in mobile IPv6 is inadequate. This verification does not support the link 

prefix to make an authorized decision about the Mobile Router (MR) HoA, CoA, 

and the complete prefixes before the MR, nor does it check whether it is handled 

by the mobile entity inside the NEMO.

iii. The size of correspondent binding cache is finite.

CN may choose to drop any entry that exists in its BC if it is substantially 

insufficient in order to make space for a new entry. When entries are deleted from 

the CN, as a result packet loss will be increased. At that time the CN will pass a 

packet without destination option set and routed through HA of MNN to inform 

them that the CN needs a new Binding Update (BU) with its Return Routability 

Procedure (RRP). The new BU will lead to increase additional overhead and 

latency in delivering packets to the mobile node.
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1.3 RESEARCH AIM AND OBJECTIVES 

The aim of this research is to improve the efficiency as well as security and 

management of RO in IP-based mobility protocol. To restrict the scope of the 

discussion, this thesis is limited to an improvement in the IPv6 network mobility 

protocol (NEMO). The reasons for choose network mobility are: firstly, our mobile 

lifestyle is currently reflected in the importance of mobile communication. Secondly, 

ubiquitous mobile devices and services supporting IPv6/MIPv6 have recently 

proliferated widely, it is expected that IPv6/MIPv6 and its extensions replace the 

current IPv4/MIP in the next couple of years. Thirdly, simulation packages such as 

NS-2 (McCanne et al. 1997), OMNET++ (Varga 2001, 2006) and OPNET (Modeler 

2009) implement MIPv6 as a base work for other extensions in order to simulate and 

evaluate the existing works as well as the proposed work.

The themes of this research, and hence this thesis, are:

i. To identify the weakness prevalent in the existing RO schemes for NEMO and 

MIPv6.

ii. To propose a new lightweight and secure route optimization scheme based on 

correspondent network in both stateless and stateful address auto-configuration.

iii. To propose a new binding cache replacement policy using prioritizing algorithm 

in correspondent entities. 

iv. To validate and evaluate the performance of the new architecture with a new 

return routability procedure as integrated scenario.
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1.4 THESIS CONTRIBUTION

This thesis explores mechanisms to deploy RO in a secure mode, with low 

deployment cost and without modifying the main entities. The main contributions of 

this thesis are as follows:

i. A new architecture (FRON) has been developed using the correspondent 

Firewall to support the RO in NEMO BSP. Also, a more secure and reliable 

return routability procedure (ERRP) as an extension from the original one has 

been proposed. This mechanism provides a more secure and lightweight 

communications. Moreover, the integration of the proposed return routability 

procedure (ERRP) with FRON architecture combined with the prefix delegation 

protocol (DHCPv6PD) to produce a new RO scheme with new option headers 

for stateless DHCPv6 NEMO. 

ii. A new cache replacement policy is implemented to alleviate the link drop

problem in correspondent Entity (i.e. CN, correspondent router, and 

correspondent firewall) cache table. This policy uses user class prioritizing 

mechanism. This mechanism guarantees that the user with higher amount of 

traffic not suffers from link drop problem. 

iii. A new Firewall agent with its classifier is generated using NS-2 network 

simulator. The validation and the evaluation of the new architecture using new 

proposed model are tested with different mobility scenarios.

iv. A new return routability procedure message format is produced for ERRP in NS-

2 simulator. The integration of the ERRP with new FRON architecture provides 

a new route optimization scheme.
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1.5 THESIS RESEARCH METHODOLOGY

The methodology of this research work as shown in Figure 1.2 can be explained as 

follows:

i. Review the Literature 

In this step, an excessive investigation has been done on the main topics which 

constitute the research.

ii. Design Architecture for reducing the signaling load on CN and shortening the 

communication path.

iii. Design a new option header in return routability procedure to validate and 

authenticate the list of prefixes delegated to the NEMO mobile router. 

iv. Design a scheme for optimizing the communication path in stateless and stateful 

scenarios, in this stage a low cost route optimization scheme is proposed by using 

the FRON architecture with the ERRP to reduce the communication path between 

the communicating entities. 

v. Design new rules for binding entries in CN binding cache table depends on the 

priorities of the binding update message according to user class priority.  

vi. Implementation, The system modeling refers to an act of representing an actual 

system in a simply way. System modeling is extremely important in system design 

and development, since it gives an idea of how the system would perform if 

actually implemented. With modeling, the parameters of the system can be 

changed, tested, and analyzed. More importantly, modeling, if properly handled, 

can save costs in system development. To model a system, some simplifying 

assumptions are often required. It is important to note that too many assumptions 

would simplify the modeling but may lead to an inaccurate representation of the 

system. Traditionally, there are two modeling approaches: analytical approach and 

simulation approach.
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Figure 1.2 Methodology of New NEMO RO Scheme
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1.6 THESIS ORGANIZATION

This thesis is organized into seven chapters. The first chapter briefly introduces the 

definition, advantages, weakness and history of NEMO. This chapter also states the 

objectives and contributions of this thesis.

Chapter II contains the back ground of IP and its mobility. This chapter also 

covers the literature review and the basic principles of MIPv6 and its extension 

NEMO BSP. This chapter reviews the peak problems and its reduction techniques. 

The adaptive schemes and definitions are also explained in details in this chapter. 

Chapter III describes the design of new infrastructure base RO scheme using

correspondent firewall (FRON).

Chapter IV proposes a new secure and lightweight return routeability 

procedure (ERRP) using FRON structure. 

Chapter V develops the ERRP to provide return routeability in stateless 

DHCPv6 network scenario. 

Chapter VI proposes a new cache replacement policy to overcome the link 

drop problems.

Lastly, Chapter VII contains the conclusions from the thesis, and 

recommendations for follow-on research.



CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION 

This chapter gives an insight into the current specification of the Mobile IPv6 protocol 

and its extension NEMO. In detail, Section 2.2 It first presented an overview of the 

basic concepts related to the Internet Protocol. Section 2.3 it then focused on IP 

mobility and presented problems caused by node and network mobility. Subsequently, 

gives an overview of the host mobility protocol, its main components, and the 

communications between the mobile node and a CN. Then describe protocol problems 

and limitations. In addition, network mobility (NEMO BSP) protocol presented with 

its optimization and all of its benefits and limitations. Moreover, this subsection 

classifies the RO schemes proposed in the literature over the last five years. We 

classify the schemes based on the basic approach for RO. Finally, Section 2.4 

summarizes the chapter. 

2.2 IP ADDRESS

The Internet Protocol (IP) address is part of the TCP/IP network suite that is widely 

deployed on the Internet. This numerical label is used to provide addresses to 

distinctly identify devices, so that theses devices can communicate with each other. 

An IP address divided in to two parts: host or network interface, where as (Postel 

1981) characterize these interfaces as “A name indicates what we seek. An address 

indicates where it is. A route indicates how to get there”.  The current form of IP, 

IPv4, has remained relatively unchanged since it was adopted in the late 1970 by 

ARPAnet. Unfortunately, the enormous growth of smart mobile devices and 

unprecedented need for IP addresses has indicate that there has been a rapid decline in 

the number of IP addresses available for allocation. The way in which the addresses 
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were distributed originally, classed based networks, also contributed to this shortage 

because large numbers of addresses were allocated but remained useless. The 

designers in Internet Engineering Task Force (IETF) formally approved the new 

version of the protocol, IPv6, on 1995 (Deering et al. 1995). IPv6 was standardized as 

RFC in 1998 (Deering et al. 1998). The main objectives of this new version were to 

expand the address space sufficiently for future use and also to make improvements to 

IPv4 where necessary; particularly in the areas of security, network scalability and 

quality of service. The IETF workgroups developing this new version of the protocol 

decided that the address size should be expanded from the IPv4 (32-bit addresses) to 

the new version of IPv6 with (128-bit addresses). It is hoped that this will provide 

enough addresses for all devices that connected to the Internet within this couple of 

years such as: smart mobile phones, pocket PCs, printers, scanners, routers, fridges, 

toasters etc (McGann et al. 2005; Blanchet 2006).

The IPv6 header is generally based on the IPv4 header with dropping of some 

IPv4 header fields such as (Header Length field, Checksum field, an the fields used 

for Fragmentation) or made as optional fields and new extension options supported for 

more efficient forwarding, greater flexibility for introducing new options in the future, 

and less stringent limits on the length options (see Figure 2.1). There are still fields for 

the source and destination addresses, but they have been expanded to accommodate 

the larger addresses and the version field is set to six instead of four. All the optional 

fields were removed from the main IPv6 header and made into “Extension Headers”. 

The other changes that were made were more of a restructuring nature. The 

functionality of the Type-of-Service (ToS) field in the IPv4 header was replaced by 

the Quality of Service (QoS) fields to provide support for real time traffic such as 

(Traffic Class field and the Flow Label field) (Deering et al. 1995). The Payload 

Length field has replaced the Total Length field, as the length of the IPv6 header is 

fixed there is no longer any need for this to be taken into account when calculating the 

length of the packet (the optional headers in IPv4 were of variable length, thus so was 

the overall header). The Payload Length field can register a data payload of up to 

64kB, or more if the Jumbogram (Borman et al. 1999) (i.e. setting the payload length

and next header fields to zero it means IPv6 jumpogram, the next header will be hop-

by-hop options header) option is specified. The Time-To-live field was replaced by 
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the Hop Limit field. It operates in the same way as in IPv4, with each router the packet 

passes through decrementing the field by one, indicating each “hop” in an end-to-end 

route. The old Protocol Type field has been replaced by the Next Header field; this 

contains the code that indicates whether an extension header follows the main header. 

The Next Header field is also used to specify the transport layer protocol of the packet 

payload, just as in IPv4. These codes are the same as they are in IPv4: TCP (Carpenter 

2000), UDP (Deering et al. 1998) and ICMPv6 (Dupont et al. 2004). A Next Header 

value of “59” means there is no next header in the packet as shown Table 2.1. This 

restructuring has resulted in a much simpler header compared to its IPv4 counterpart; 

the IPv4 header has thirteen fields in it whereas the IPv6 header has only eight. Even 

though the new addresses are four times the size of the IPv4 addresses, the 

restructuring has resulted in a new header that is only twice the size of its predecessor. 

This is intended to offset the bandwidth cost of using these larger addresses and it 

should help to make routing these packets more efficient (Kafle 2006).

Figure 2.1 IPv4 and IPv6 Headers
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2.2.1 Extension Headers

As previously mentioned, all the options fields of the IPv4 header are not present in 

the main IPv6 header and flexible extension headers that are placed in between the 

IPv6 header and the transport layer header were created instead. These extension 

headers provide support in IPv6 for features, such as security (in the form of IPsec), 

source routing, network management and fragmentation. There are six Extension 

Headers: Hop-by-Hop option, Destination option, Routing, Fragment, Authentication 

and Encapsulation Security Payload. Different extension headers can be chained 

together in a packet. Each extension header also has a Next Header field, which is 

used to identify the header following it.

Figure 2.2 Chaining Extension Headers in IPv6 Packets

Figure 2.2 shows this chaining process and table 2.1 contains the next header 

codes. Extension headers should always be chained together in the order they are 

listed above. This is to facilitate the processing of these headers at the destination. The 

Hop-by-Hop options header must always follow the main IPv6 header, as it is the only 

extension header that must be examined by intermediate nodes. The Jumbogram and 

Router Alert options are part of the Hop-by-hop extension header. Jumbograms are 
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used to send packets with a larger data payload than the 64 KB specified by the 

Payload Length field in the IPv6 header. To implement this, the value of the Payload 

length field should be set to zero and the Jumbogram extension header attached; then a

much larger payload of up to 4GB can be sent in the one IPv6 datagram (on links with 

a high enough MTU). The router alert Hop-by-Hop option is used to notify transit 

routers that they should examine the contents of the packet more thoroughly before 

forwarding it on. This option is used to specify that the datagram requires special 

processing by the nodes route. Each extension header only occurs once per packet at 

most, except the destination options header. The first instance of the destination option 

is used to carry information to the destinations listed in the destination address field in 

the IPv6 header and the addresses in the routing header, and the second is for optional 

information that is only to be read by the final destination (Deering et al. 1998).

Table 2.1 IPv6 Extension Headers and their Recommended Order in a Packet

(Johnson et al. 2004)

Order Header Type Next Header Code

1 Basic IPv6 Header -

2 Hop-by-Hop Options 0

3 Destination Options (with Routing Options) 60

4 Routing Header 43

5 Fragment Header 44

6 Authentication Header 51

7 Encapsulation Security Payload Header 50

8 Destination Options 60

9 Mobility Header 135

No next header 59

Upper Layer TCP 6

Upper Layer UDP 17

Upper Layer ICMPv6 58
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The routing header is used to specify intermediate nodes the packet must pass 

through on the way to the destination. Different types of routing headers may be used. 

The “type 0” routing header is similar to IPv4’s loose source routing option. Its header 

comprises of a next header field, which identifies the header following it; the Hdr Extn 

Length, which gives the length of the routing header (in the type 0 case, the Header 

Extension Length is twice the number of addresses given in the header); the routing 

header type; the Segments Left field, which identifies how many nodes must still be 

visited by the packet; a 32-bit reserved field that is to be ignored; and finally the 

addresses that must be visited en-route by the packet.

In IPv6, fragmentation of a packet is only permitted when it is performed by 

the source node. Routers are not allowed to fragment a packet. If a packet is received 

by a router that is too big for the link, it must be discarded and an Internet Control 

Message (ICMPv6) must be sent back to the source of the packet to inform them the 

packet was dropped. Removing the option to fragment packets en-route should result 

in fewer problems for hosts and routers, such as crack attempts using overlapping 

fragments and broken path MTU. If a source wishes to fragment a packet it uses the 

Fragment extension header. The original packet that is too large is divided up into two 

sections: the “unfragmentable part”, which contains the IPv6 header and all extension 

headers which must be processed by nodes en-route to the final destination (i.e. the 

Hop-by-Hop option, and the destination option and routing header where specified); 

and the “fragmentable part”, which consists of the rest of the extension headers (if 

there are any) and the payload data. The fragmentable part is divided into fragments of 

multiples of 8-octets long, except possibly the final fragment, and each fragment is pre 

fixed by the “unfragmentable part” and the fragment header. Security was also a major 

concern of the IETF when it was designing IPv6. They aimed to establish three 

important security services: packet authentication, packet integrity, and packet 

confidentiality. These security features are provided by IPsec (Kent et al. 1998) via the 

Authentication (AH) and Encapsulation Security Payload (ESP) extension headers as 

shown in Figure 2.3. The AH provides integrity validation, which guarantees that a 

packet comes where it claims to have come from. This is achieved by the exchange of 

cryptographic keys, either manually or automatically (using Internet Key Exchange 

(IKE)). Before each packet is sent, the header creates a checksum based on the key 
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agreed by both hosts (typically a MD5 hash). This hash is then re-run on the receiving 

end and is compared to the original checksum. The AH is used to prevent host 

spoofing attacks and packet modification attempts, but it does not provide any 

protection against packet sniffing. The ESP extension header is used to provide packet 

confidentiality as well as the same security services that AH provides. This high level 

of privacy and integrity for packets was unheard of in IPv4, except in the case of 

Secure Socket Layer (SSL) applications or where the IPv4 implementation of IPsec 

was deployed; IPsec was back-ported to IPv4, but was not made an integral part of the 

protocol as in IPv6. ESP can be deployed in two ways: transport mode or tunnel 

mode. In transport mode the encryption is applied to the transport layer and other 

upper layer protocols but not the IPv6 header or any other extension headers that come 

before the AH and ESP headers. With Tunnel mode ESP, the entire packet is 

encrypted including the entire IPv6 header, and a new header prefixes the 

encapsulated encrypted packet. (Kent et al. 1998) describes the difference between 

AH and ESP as: “The primary difference between the authentication provided by ESP 

and AH is the extent of the coverage; ESP does not protect the IP header fields unless 

those fields are encapsulated by ESP (tunnel mode).”

Figure 2.3 Data Traffic between Two Mobile Nodes over the Route optimized Path


